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If P~ is a polynomial of total degree n (;;'2) in r (;;'1) variables then the sum of
those coefficients whose degree is precisely n - 1 cannot exceed 2n - 2 II P~ II in
asolute value (the uniform norm is taken on the r-dimensional unit cube). This
generalizes a well-known inequality for univariate polynomials which is due to
V. Markov.

1. INTRODUCTION

P. Chebyshev's [I] celebrated theorem on polynomials with fixed leading
coefficients which deviate least from zero on I = [-I, 1] has the reinter
pretation

(1)

where P n(x) = L.j~o aj >! is a univariate polynomial of degree not higher
than n ~ I and II . II denotes the uniform norm on I. Markov [2] obtained
estimates for the other coefficients of P n as well (see also [3, p. 56] or
[4, p. 167]). In particular,

n ~ 2. (2)

There is equality in (1) or (2) if P n = Tn or T n-l' respectively, Tn(x) =
cos(n arccos x) being the nth Chebyshev polynomial of the first kind.

In this note we consider extensions of (1) and (2) to multivariate
polynomials.

Denote by P~(x) = Lm'<n bmxm a polynomial in r variables of total degree
not exceeding n. Here, x = (Xl"'" X r ) E IR r

, m = (m] ,... , m r ) E IN~, X
m =
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Xf' ... X;!\ bm E IR, and m' = ml + ... +mr • We put IIP~II = max IP~(x)',

x E I'.

2. RESULT

Our first aim is to call attention to a generalization of (1) which IS

contained in [5] (see also [6, p. 234]).

THEOREM 1 (C. Visser)

I~n bm I<2
n

-
1 IIP~II·

We add here the corresponding generalization of (2).

THEOREM 2.

(1')

n~ 2. (2')

There is equality in (1') or (2') if P~(x) = L:J= 1 Tn(xj ) or L:f= I Tn _Jxj ),

respectively, equality in (1') or (2') also holds for Tn or Tn_/, respectively,
when regarded as polynomials in several variables.

We note in passing that estimates for each single leading coefficient b m

(m' = n) were given by M. Reimer [7].

3. PROOF

We shall prove Theorem 2 using a modification of the argument in [51
which in turn is an extension of an argument already used by H. Liebmann
[8] for a proof of (1); see also L. Fejer [9, p. 82]. The following discrete
orthogonality relationships of the exponential function are well known:

N-l

)' e2ni (V-U)P/N = N,
~

p=o
if u:: V mod N, N E IN,

(3)

= 0, otherwise.

Choosing N = 2(n - 1), u = n - 1 and v = k' for some k E zr yields

2n-3

2.: (-IY ei(k.s) = 2(n - 1),
p=o

=0,

if n-I::k'mod2(n-I),

otherwise,

(4)
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with s = s(p) = (pn/(n - 1),..., pn/(n - 1» E IR rand (, ) denoting the usual
inner product in IR r.

We put P~(x) = P~(cos t p ... , cos tr ). Then p~ transforms into a
trigonometric sum F which can be written as

F(t) = L Ckei(k.I>,

Ik'i <n
(5)

The coefficients of p~ and F satisfy, in particular, the identity

if m' = k' = n - 1. (6)

We deduce that in view of (4), (5), and (6),

2n-3 2n 3

L (-lY F(s) = f (-IY ( L ckei(k.S»

p=O p=O Ik'! <n
2n-3

L (ck I (_l y ei (k.s»

Ik'i <n p=O

= 2(n - 1) ( L Ck + L Ck)
k'=-(n-[) k'=n-!

It follows that

(2(n - 1)/2
n

-
2) Im'~-! bm I~ 2p~: IF(s)1

~ 2(n - 1) max IF(t)1 = 2(n - 1) IIP~II.
I

Note that the above argument does not provide estimates for

I '\~ bmj,
ml~-q

(7)

(8)

q ~ 2, since now a one-to-one correspondence between the coefficients of p~
and F as that in (6) fails to hold. Theorem 2 is excerpted from the author's
forthcoming doctoral dissertation at Universitat Dortmund.
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