Note

A Generalization of an Inequality of V. Markov to Multivariate Polynomials

Heinz-Joachim Rack
Universität Dortmund, Abteilung Mathematik, Postfach 500500, D-4600 Dortmund 50, West Germany
Communicated by T. J. Rivlin
Received March 23, 1981

Abstract

If P_{n}^{r} is a polynomial of total degree $n(\geqslant 2)$ in $r(\geqslant 1)$ variables then the sum of those coefficients whose degree is precisely $n-1$ cannot exceed $2^{n-2}\left\|P_{n}^{r}\right\|$ in asolute value (the uniform norm is taken on the r-dimensional unit cube). This generalizes a well-known inequality for univariate polynomials which is due to V. Markov.

1. Introduction

P. Chebyshev's [1] celebrated theorem on polynomials with fixed leading coefficients which deviate least from zero on $I=[-1,1]$ has the reinterpretation

$$
\begin{equation*}
\left|a_{n}\right| \leqslant 2^{n-1}\left\|F_{n}\right\|, \tag{1}
\end{equation*}
$$

where $P_{n}(x)=\sum_{j=0}^{n} a_{j} x^{j}$ is a univariate polynomial of degree not higher than $n \geqslant 1$ and $\|\cdot\|$ denotes the uniform norm on I. Markov [2] obtained estimates for the other coefficients of P_{n} as well (see also [3, p. 56] or [4, p. 167]). In particular,

$$
\begin{equation*}
\left|a_{n-1}\right| \leqslant 2^{n-2}\left\|P_{n}\right\|, \quad n \geqslant 2 . \tag{2}
\end{equation*}
$$

There is equality in (1) or (2) if $P_{n}=T_{n}$ or T_{n-1}, respectively, $T_{n}(x)=$ $\cos (n \arccos x)$ being the nth Chebyshev polynomial of the first kind.

In this note we consider extensions of (1) and (2) to multivariate polynomials.

Denote by $P_{n}^{r}(\mathbf{x})=\sum_{m^{\prime} \leqslant n} b_{m} \mathbf{x}^{\mathbf{m}}$ a polynomial in r variables of total degree not exceeding n. Here, $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right) \in R^{r}, \quad \mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}_{0}^{r}, \quad \mathbf{x}^{\mathbf{m}}=$ 94
$x_{1}^{m_{1}} \cdots x_{r}^{m_{r}}, b_{\mathrm{m}} \in \mathbb{R}$, and $\mathbf{m}^{\prime}=m_{1}+\cdots+m_{r}$. We put $\left\|P_{n}^{r}\right\|=\max \left|P_{n}^{r}(\mathbf{x})\right|$, $\mathbf{x} \in I^{r}$.

2. Result

Our first aim is to call attention to a generalization of (1) which is contained in [5] (see also [6, p. 234]).

Theorem 1 (C. Visser)

$$
\left|\sum_{\mathbf{m}^{\prime}=n} b_{\mathbf{m}}\right| \leqslant 2^{n-1}\left\|P_{n}^{r}\right\| .
$$

We add here the corresponding generalization of (2).
Theorem 2.

$$
\left|\sum_{\mathbf{m}^{\prime}=n-1} b_{\mathrm{m}}\right| \leqslant 2^{n-2}\left\|P_{n}^{r}\right\|, \quad n \geqslant 2 .
$$

There is equality in (1^{\prime}) or (2^{\prime}) if $P_{n}^{r}(\mathbf{x})=\sum_{j=1}^{r} T_{n}\left(x_{j}\right)$ or $\sum_{j=1}^{r} T_{n-1}\left(x_{j}\right)$, respectively, equality in (1') or (2') also holds for T_{n} or T_{n-1}, respectively, when regarded as polynomials in several variables.

We note in passing that estimates for each single leading coefficient b_{m} $\left(\mathbf{m}^{\prime}=n\right)$ were given by M. Reimer [7].

3. Proof

We shall prove Theorem 2 using a modification of the argument in [5] which in turn is an extension of an argument already used by H. Liebmann [8] for a proof of (1); see also L. Fejér [9, p. 82]. The following discrete orthogonality relationships of the exponential function are well known:

$$
\begin{align*}
\sum_{p=0}^{N-1} e^{2 \pi i(v-u) p / N} & =N, & & \text { if } \quad u \equiv v \bmod N, N \in \mathbb{N} \tag{3}\\
& =0, & & \text { otherwise }
\end{align*}
$$

Choosing $N=2(n-1), u=n-1$ and $v=\mathbf{k}^{\prime}$ for some $\mathbf{k} \in \mathbb{Z}^{r}$ yields

$$
\begin{align*}
\sum_{p=0}^{2 n-3}(-1)^{p} e^{i(\mathbf{k}, \mathbf{s})} & =2(n-1), & & \text { if } n-1 \equiv \mathbf{k}^{\prime} \bmod 2(n-1) \tag{4}\\
& =0, & & \text { otherwise },
\end{align*}
$$

with $\mathbf{s}=\mathbf{s}(p)=(p \pi /(n-1), \ldots, p \pi /(n-1)) \in \mathbb{R}^{r}$ and \langle,$\rangle denoting the usual$ inner product in \mathbb{R}^{r}.

We put $P_{n}^{r}(\mathbf{x})=P_{n}^{r}\left(\cos t_{1}, \ldots, \cos t_{r}\right)$. Then P_{n}^{r} transforms into a trigonometric sum F which can be written as

$$
\begin{equation*}
F(\mathbf{t})=\sum_{\left|\mathbf{k}^{\prime}\right| \leqslant n} c_{\mathbf{k}} e^{i(\mathbf{k}, \mathbf{t}\rangle}, \quad c_{\mathbf{k}}=c_{-\mathbf{k}} . \tag{5}
\end{equation*}
$$

The coefficients of P_{n}^{r} and F satisfy, in particular, the identity

$$
\begin{equation*}
b_{\mathrm{m}} / 2^{n-1}=c_{\mathbf{k}}, \quad \text { if } \quad \mathbf{m}^{\prime}=\mathbf{k}^{\prime}=n-1 \tag{6}
\end{equation*}
$$

We deduce that in view of (4), (5), and (6),

$$
\begin{align*}
\sum_{p=0}^{2 n-3}(-1)^{p} F(\mathbf{s}) & =\sum_{p=0}^{2 n-3}(-1)^{p}\left(\sum_{\left|\mathbf{k}^{\prime}\right| \leqslant n} c_{\mathbf{k}} e^{i\langle\mathbf{k}, \mathbf{s}\rangle}\right) \\
& =\sum_{\left|\mathbf{k}^{\prime}\right| \leqslant n}\left(c_{\mathbf{k}} \sum_{p=0}^{2 n-3}(-1)^{p} e^{i\langle\mathbf{k}, s\rangle}\right) \\
& =2(n-1)\left(\sum_{\mathbf{k}^{\prime}=-(n-1)} c_{\mathbf{k}}+\sum_{\mathbf{k}^{\prime}=n-1} c_{\mathbf{k}}\right) \\
& =\left(2(n-1) / 2^{n-2}\right)\left(\sum_{\mathbf{m}^{\prime}=n-1} b_{\mathbf{m}}\right) . \tag{7}
\end{align*}
$$

It follows that

$$
\begin{aligned}
\left(2(n-1) / 2^{n-2}\right)\left|\sum_{m^{\prime}=n-1} b_{m}\right| & \leqslant \sum_{p=0}^{2 n-3}|F(\mathbf{s})| \\
& \leqslant 2(n-1) \max _{\mathbf{t}}|F(\mathbf{t})|=2(n-1)\left\|P_{n}^{r}\right\| .
\end{aligned}
$$

Note that the above argument does not provide estimates for

$$
\begin{equation*}
\left|\sum_{\mathbf{m}^{\prime} \equiv n-q} b_{\mathbf{m}}\right|, \tag{8}
\end{equation*}
$$

$q \geqslant 2$, since now a one-to-one correspondence between the coefficients of P_{n}^{r} and F as that in (6) fails to hold. Theorem 2 is excerpted from the author's forthcoming doctoral dissertation at Universität Dortmund.

References

1. P. L. Chebyshev (Tchebychef), "Oeuvres," Vol. I. Chelsea, New York, 1962.
2. V. Markov (W. Markoff), Über Polynome, die in einem gegebenen Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213-258.
3. I. P. Natanson, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
4. A. Schönhage, "Approximationstheorie," de Gruyter, Berlin, 1971.
5. C. VISSER, A generalization of Tchebychef's inequality to polynomials in more than one variable, Indag. Math. 8 (1946), 310-311.
6. D. S. Mitrinović, "Analytic Inequalities," Springer-Verlag, Berlin/Heidelberg/New York. 1970.
7. M. Reimer, On multivariate polynomials of least deviation from zero on the unit cube, J. Approx. Theory 23 (1978), 65-69.
8. H. Liebmann, Vereinfachte Behandlung einiger Minimalprobleme von Tschebyscheff, Jber. Deutsch. Math. Verein. 18 (1909), 433-449.
9. L. Fejér, Über trigonometrische Polynome, J. Reine Angew. Math. 146 (1916), 53-82.
